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ABSTRACT 

A group ring code is a code that can be constructed using group rings. Linear codes 

have been associated to group rings since 1967. Many existing codes such as cyclic 

codes and abelian codes are specific examples of group ring codes. This study aims to 

answer whether there exists a group ring code that can never be a group ring code over 

a cyclic group. It is conceivable that it has a positive answer. However, our results on 

group ring codes over the dihedral group    and    do not support our belief. We 

found that every binary group ring code over    (   respectively) is equivalent to 

some binary group ring code over the cyclic group    (   respectively). 
 

1.  INTRODUCTION 

Suppose   is a finite group and   is a ring. Then 

   {∑       |    } is called a group ring over  , which has a ring 

structure as well as a free module structure. Codes that can be constructed 

using group rings are known as group ring codes. Group ring codes were first 

discussed by Berman, 1967 by associating every cyclic code to a group 

algebra over a cyclic group and by associating every Reed-Muller code to a 

group algebra over an elementary abelian 2-group. Two years later, 

MacWilliams, 1969, examined the class of codes associated to group rings 

over dihedral groups. Charpin, 1983, discovered that every extended Reed-

Solomon code can be considered as an ideal of some modular group algebras. 

Well-known classical codes, such as the extended binary Golay code, have 

been shown to be group ring codes (Landrock and Manz, 1992; McLoughlin 

and Hurley, 2008). 
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In 2000, Hughes defined a group ring code as an ideal in a group 

ring. Since then, various studies on group ring codes, such as self-orthogonal 

group ring codes, checkable group ring codes and etcetera, have also been 

done in the literature (Fu and Feng, 2009; Jitman et al., 2010; Wong and Ang, 

2013; Hurley, 2014). Hurley, 2006, discovered the isomorphism between a 

group ring and a ring of matrices. This result leads to a group ring encoding 

method for codes which was introduced by Hurley, 2009. The group ring 

codes introduced by Hurley are generally submodules of their corresponding 

group rings and are only ideals in certain restrictive cases. Throughout this 

paper, when we say group ring codes, we mean codes that are constructed 

using group ring encoding method that was introduced by Hurley. 

 

In the paper written by McLoughlin and Hurley, 2008, the extended 

binary Golay code     was shown to be a group ring code over the dihedral 

group    . However, we observe that this famous code     is not only a 

group ring code over the dihedral group     but can also be realised as a 

group ring code over the cyclic group     as well. This trigger our curiosity 

on the relation between the group ring codes over dihedral groups and the 

group ring codes over cyclic groups. We observe that every group ring code 

over a cyclic group has a shift spanning set. Based on this observation, we 

propose a sufficient condition for a group ring code to be equivalent to a 

group ring code over a cyclic group. Particularly, we found that each binary 

group ring code over the dihedral group    is always equivalent to a binary 

group ring code over the cyclic group   . Similarly, each binary group ring 

code over    is always equivalent to a binary group ring code over the cyclic 

group   . This paper is organised as follows. We give some basic definitions 

in the preliminary section. Next section contains our main results and some 

conclusions are provided in the last section. 

 

2.  PRELIMINARY 

In this paper, our focus is on binary group ring codes, that is,    -

codes, where    is the finite field of order 2 and   is a group. Therefore, all 

the definitions and results given are restricted to the finite field   , although 

some of them are applicable for an arbitrary ring  . 

 

Let   be a submodule of     and      . A function          

such that   ( )     is called a group ring encoding function (Hurley, 

2009). The image of   , denoted as   (   ), is called an    -code with 

generator   relative to the submodule  . Thus   (   ) is the set *     
 +. 
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It is pointed out by Hurley, 2009, that if a submodule of     has a 

basis that consists of only group elements, then the corresponding generating 

matrix and parity check matrix can be constructed easily. Hence, following 

Hurley’s approach, we concern only on    -codes such that the 

corresponding submodule   are generated by a subset N of  , that is 

     
( ). It is easy to verify that the code   (   )     

(  ) and thus 

   is a spanning set for   (   ). By abuse of notation, we denote the group 

ring code by   (   )  instead of   (   ) . Clearly the group ring code 

  (   ) is of the greatest dimension among the group ring codes generated 

by  . 

 

From now on, for the remaining of this section, fix a group  . 

Suppose *          + is a fixed listing of the elements of  . Every    -

code   (   ) can be associated with a linear code, denoted   (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, of 

length   by identifying   ∑        (   ) 
    with the binary string 

 ̅         . Note that if a linear code of length   can be realised as a 

group ring code over some group, then the corresponding group must be of 

order  . Recall that two binary linear codes    and    are called equivalent if 

and only if there exist a permutation of coordinates which sends    to   . 

Equivalently, there exist a pair of bases of    and    respectively that are 

equivalent. Two group ring codes are said to be equivalent if they are 

associated to two equivalent linear codes. 
 

Definition 2.1. (Hurley, 2009). The    -matrix of   ∑    
           is 

the matrix [   
    

]
   

. The rank of  , denoted     ( ), is the rank of the 

   -matrix for  .  

 

Remark 2.2.  

(i) Every     row in    -matrix of   can be identified with the element 

        and thus the rank of   is equal to the maximum number of 

linearly independent elements in *             +. 
(ii) Suppose       with     ( )   . The dimension of any    -code  

generated by   is at most  ; particularly, the dimension of   (   ) is 

equal to  . 

(iii) Suppose      . Every element of the form        where     has 

the same rank as  . 
 

For any element   ∑           , the support of   is defined to 

be the set  

    ( )  *        + 
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and the weight of   is defined by  

 

  ( )       ( ) . 
 

3.  MAIN RESULTS 

3.1.  Group Ring Codes over Cyclic group up to Equivalent 

It is well known that the cyclic codes are useful because they are convenient 

for efficient error detection and correction. In this section, we discuss on the 

group ring codes over cyclic group    ⟨      ⟩, which can be treated as 

a generalisation of cyclic codes.  

 

Recall that the map     
    

  such that  (       )              is 

called a cyclic shift map. Using the cyclic shift map  , we define a shift set as 

follows. 

 

Definition 3.1.1. A set *          +    
  is called a shift set if each 

      (  ) for some positive integer   . 

 

The following is a result for a group ring code to be equivalent to a group 

ring code over a cyclic group. 

 

Proposition 3.1.2. Suppose *          + is a fixed listing of the elements 

of  . An    -code is equivalent to a binary group ring code over a cyclic 

group of order   if and only if the associated linear code has a spanning set 

that is equivalent to a shift set.  

 

Proof. Suppose *           + is a fixed listing of elements in the cyclic 

group    and   (   )  is an    -code that is equivalent to    
(   ) , a 

group ring code over   . Note that the set   ̅̅ ̅̅  is a shift set that span the code 

   
(   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Since   (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is equivalent to    

(   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , the code   (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ has 

a spanning set that is equivalent to   ̅̅ ̅̅ .  
 

Let   (   ) be an    -code. Suppose   (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ has a spanning set 

that is equivalent to a shift set  ̅  *  ̅̅ ̅   ̅̅ ̅     ̅̅ ̅+ where   ̅̅ ̅          and 

  ̅     (  ̅̅ ̅) for some positive integers   . The set  ̅ can be identified with 

the set   *          +  where                    and 

      
  , which span an     -code. Hence,   (   ) is equivalent to a 

binary cyclic group ring code.     

Before going on, we prove the following result that will be used to facilitate 

our discussion afterwards. 
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Proposition 3.1.3. Suppose       and    . For arbitrary    , there 

exists      such that   (     )    (   ) . Particularly, the code 

  (    ) is the same as the code   (   ). 

Proof. Suppose   {   
    

      
}   . Then the code  

 

  (   )     
{    

     
       

}. 

 

For each          , there exists unique    
   such that     

    
. 

Hence, 

  (   )     
{ (    

)  (    
)    (    

)} 

     
{  (   

)   (   
)     (   

)} 

     (     ) 
 

where    {   
    

      
}   .  

 

Particularly, we have    (    )     
* (   )  (   )    (   )+ 

     
*             + 

    (   ).       

 

We have settle down the basic layout that is needed and now we are 

ready to move on to discuss on the relation between the group ring codes 

over dihedral groups and the group ring codes over cyclic groups. 

 

From now on, let     ⟨                   ⟩   be the 

dihedral group of order    and      〈       〉  be the cyclic group of 

order   . Throughout our discussion, we shall consider 

*                              + and *              + as the fixed 

listing of elements in     and     respectively. 

 

Given an      -code     
(   ) where      , our aim is to look 

for a suitable         and       such that the      -code     
(   ) is 

equivalent to     
(   ). By Proposition 3.1.2, an      -code     

(   ) is 

equivalent to an      -code if there exist a permutation of coordinates such 

that the set   ̅̅ ̅̅  is a shift set.  

 

In our work, we need another technical result. Fix an element   
∑    

          
          and   {                              } . 

Let    ∑   
   
      (     )   and    *                               



Zi Shyuan Tan, Miin Huey Ang & Wen Chean The 

 

42 Malaysian Journal of Mathematical Sciences 
 

        + for some integer  . Under the permutation on coordinates that 

fixed   *       +  and map       (   )      for   

*       +, that is ( 
 
 
 
 
 
 
  

 
 
  

   
   (   )     

  
   

   (   )     
 
 
   

  
  (   )     

), 

the linear code     
(     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is identical with     

(   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . Hence the code 

    
(     ) is equivalent to     

(   ).  This gives part (i) of the following 

result. Note that part (ii) of the following proposition is true by Proposition 

3.1.3. 

 

Proposition 3.1.4. Suppose   ∑    
          

          and    

∑   
   
      (     )   for some integers  . Then  

 

(i) Every group ring code generated by    is equivalent to some group ring 

code generated by  .  

(ii) Every group ring code generated by    , where      , is equivalent 

to some group ring code generated by  .  

 
In the next two sections, we shall discuss the equivalence between 

     -codes and      -codes for     and  . For each      -code 

    
(   ), we search for an equivalent      -code     

(   ). Says   is of 

weight   and rank  . For the sake of comparison, we choose an       

element of weight   and rank   as our  . In fact, any       element of 

weight   and of rank greater than or equal to   may act as  . Nevertheless,   

with smaller rank may not work; this is due partially to the fact that every 

group ring code with generator of rank   has dimension at most   (Hurley, 

2009).  

 

As shown in the following examples, a code     
(   )  can be 

equivalent to     
(   ) although   and   are of different rank or weight.  

 

Example 3.1.5. The element               is of rank 2 and 

               is of rank 5. The code    
(      

   *   +)     
*                    +  can be identified 

with the code    
(         *   +)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     

*             + whereas 

the code    
(          *   +)     

*               

     +  can be identified with the code    
(          *   +)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

   
*             +.  

We can verify that the codes    
(         *   +)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 

   
(          *   +)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are equivalent, by some permutation of the 
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digits, which implies that the code    
(         *   +) is equivalent 

to the code    
(          *   +). 

 

Example 3.1.6. Both the elements               and          

are of rank 5 but of different weight. It can be shown that  

   
(           )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and    

(      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are equivalent, which consist of 

all   
  elements of even weight. Hence, the codes    

(           ) 

and    
(      ) are equivalent. 

 

3.2.      -code versus     -code 

Recall that    ⟨                   ⟩   is the dihedral group of 

order   and     〈      〉  is the cyclic group of order  . We start our 

discussion by considering a partition   of     . Using Proposition 3.1.3 and 

3.1.4, for a fixed   ∑    
        

        , we group all the elements 

   in      such that every group ring code generated by    is equivalent to a 

code generated by   into a set denoted by   , namely, 

   {[∑    
    (   )   

   ] |  *     +     } . Then we take 

  *      + , where   *                           
                                        
   + is a set of all distinct representative element of each component in  .  

Note that every nonzero element     has   in their support. The Table 1 

shows that   *      + is a partition of     . 

 
TABLE 1: Partition   of      

 

               
  * + 1 

  *      + 6 

    *(   )      + 6 

    *(   )  (    )  (     )          + 9 

      *(     )  (      )  (       )      + 18 

       *(      )       + 2 

         *(        )      + 6 

         {
(        )  (          )  

(         ) 
|        } 9 

            *(           )      + 6 

           
     

*               + 1 

  64 

 

Since every code generated by an element in    is equivalent to some 

code generated by  , if we manage to prove that every     -code generated 

by     * + is equivalent to some     -code, then we can conclude that 
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every     -code is an     -code up to equivalent. Hence, we only focus on 

those codes with generator     * +  starting from this point. Now, we 

categorise all the elements     * + according to their weight and rank in 

the following table. 

 
TABLE 2: Categorisation of elements in   

 

Wt     * +  rank 

1   6 

2 
    4 

    3 

3 
      4 

       2 

4 
         5 

         2 

5             6 

6                 1 

 

Next, for every     * +, we want to identify the possible element 

        such that every group ring code with generator   is equivalent to 

some group ring code generated by   . Suppose   is of weight   and rank  . 

For the sake of comparison, we would like to choose an      element of 

weight   and rank   that has 1 in the support as our   . As shown in the 

following table, for every    * + , such an element         that we seek 

exists.  

 
TABLE 3: Element         of same weight and rank with     * + 

 

Wt     * +           rank 

1     6 

2 
         4 

         3 

3 
             4 

               2 

4 
                   5 

                   2 

5                          6 

6                                 1 

 

Now, we want to show that every     -code with generator   
  * + is an     -code with generator    up to equivalent. Our next example 

illustrates specifically for      . 

 

Example 3.2.1. Consider the     -codes    
(     )  where   is an 

arbitrary subset of   . Note that   (   )    and     (   )   . From 

Table 3.2.3, the element           is of the same weight and same rank 

as    .  
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Recall that a codeword of the form ∑    
        

         is 

identified with the binary codeword             , whereas a codeword of 

the form ∑    
  

         is identified with the binary codeword 

            . Additionally,    
(     ) has a spanning set (   ) . 

Similar is true for    
(      ). 

 

By comparing the two side of table below, we can choose   easily 

such that    
(     ) and    

(      ) are equivalent, to be described 

below. 
TABLE 4: Binary representations for (   )   and (    )   

 

     (   )  (   ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅      (    )  (    ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

      110000        101000 

       011000          001010 

        101000         100010 

        000101         010001 

        000110        010100 

           000011          000101 

 

By the permutation (           
           

) abbreviated as (       ), notice that 

the two sets of binary codewords are the same. Hence, for every   subset of 

  , we can easily find   such that    
(     ) is equivalent to    

(  

    ). For example, let   be the bijection defined by  ( )     ( )  
    (  )      ( )      (  )     (   )    , then we can take   

to be  ( ).   

 

Table 5 shows the corresponding permutation that works in the way as 

described in Example 3.2.1 for other representative elements     * + . 

Table 5 tells that every     -code generated by     * + is equivalent to 

some     -code generated by   , an element  in      such that   
    (  ),   (  )    ( ) and     (  )      ( ).  

 
TABLE 5: Permutations that sends    

(    ) to    
(     ) 

 

    * +         
Permutation on 

coordinates 

    (       ) 

         (       ) 

         (       ) 

               (       ) 

             (       ) 
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TABLE 5 (continued): Permutations that sends    
(    ) to    

(     ) 

 

    * +         
Permutation on 

coordinates 

      

   
          (       ) 

     
    

           (       ) 

      

      

         

    
(       ) 

      

     
     

         

       
(       ) 

 

Theorem 3.2.2. Every     -code is a     -code up to equivalent. 

 

Proof. Suppose    is a nonzero element in      and    is a non-empty subset 

in   . Consider the     -code    
(     ). The element    is belongs to    

for some     * + . By Proposition 3.1.3 or Proposition 3.1.4, the code 

   
(     )  is equivalent to some     -code    

(   )  for some     . 

Since    
(   ) is equivalent to some     -code    

(    ), by transitivity, 

the code     
(     ) is equivalent to some     -code    

(   ).     
 

3.3.      -code versus     -code 

The dihedral group and cyclic group of order 8 are denoted as    
⟨                   ⟩ and    ⟨      ⟩ respectively.  

 

Similar to the works in section 3.2, for a fixed   ∑    
        

    
    , we group all the elements    in      such that every group ring code 

generated by    is equivalent to a code generated by   into a set denoted by 

  , namely,    {[∑    
    (   )   

   ] |  *       +     }.  
 

The   s are either identical or disjoint and there are altogether 21 distinct   . 

The set   *      +  forms a partition of     , where   *       
                                          

                                          

                                                 

                                                 
                                          
   +, as summarised in Table 6. Note that every     is the representative 

element of each component in  .  
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TABLE 6: Partition   of      
 

               
  * + 1 

  *      + 8 

    *(   )      + 8 

     *(    )            + 4 

    *(     ) |  *       +            + 16 

       *(      )      + 8 

       *(        ) |  *       +           + 16 

      *(       ) |  *       +     + 32 

          *(         )       + 2 

         *(          ) |  *       +     + 32 

           *,     (     )  - |  *   +      + 4 

         *,    (    )  - |  *       +            + 16 

          *,    (     )  - |  *   +     + 16 

            *(             ) |  *       +      + 8 

             *,       (     )  - |  *   +     + 16 

            *,       (    )  - |  *       +     + 32 

           
    

*,          (    )  - |  *       +      + 8 

           
     

*,          (     )  - |  *   +      + 4 

           
     

{,       (        )  - |
  *       + 

           } 16 

           
        

*(                  )      + 8 

           
            

*                      + 1 

  256 

 

After that, we categorise all the elements     * + according to their 

weight and rank. Then, we search for possible candidate         such that 

      (  ),   (  )    ( ) and     (  )      ( ). It happens that 

such elements    that we seek exist for all nonzero     except for     
      . Lastly, we determine the permutations on coordinates that sends 

   
(    ) to    

(     ) for all the 19 nonzero representative elements   

(except for the case           ) as summarised in table 7. The 

codes generated by elements in           will be dealt separately. 

 
TABLE 7: Permutations that sends    

(    ) to    
(     ) 

 

Wt                rank 
Permutation 

on coordinates 

1     8 (     )(     ) 

2 

         6 (     )(     ) 

          4 (     )(     ) 

         4   
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TABLE 7 (continued): Permutations that sends    
(    ) to    

(     ) 
 

Wt                rank 
Permutation 

on coordinates 

3 

               8 (     )(     ) 

               8   

             8 (     )(     ) 

4 

                     2 (     )(     ) 

                      2   

                   3   

                    6 (     )(     ) 

5 

                         8 (     )(     ) 

                          8   

                         8 (     )(     ) 

6 

                               6 (     )(     ) 

                                4 (     )(     ) 

                                4   

7 
               

     

                

    
8 (     )(     ) 

8 
               

         

                

       
1 (     )(     ) 

 
Now, we discuss on the exceptional case, the     -codes with 

generator in    where           . If we manage to show that all 

    -codes generated by   is equivalent to some     -code, then every 

    -codes generated by an element in    is equivalent to some     -code.  

 

Consider a code    
(    ) of dimension  . Recall that if        

(implies that     is a linearly dependent spanning set for (    ) ), then there 

exists a subset      with       such that    is linearly independent and 

span the same code as    , that is,    
(   )     

(    ). This means that, 

focus on those set   with       such that    is a basis for the code 

   
(   ) is enough to cover all     -codes of dimension   with generator 

 . 
 

Note that   is of rank 4 and hence the dimensions of     -codes 

with generator   are at most 4 (Hurley, 2009).  
 

(i) Dimension = 4: Recall that the code    
(    ) is the code of largest 

size (hence of dimension = 4) among all the     -codes generated by  . 

Any 4 linearly independent elements in the set     form a basis for the 

code    
(    ).  

Hence every dimension four     -codes generated by   is the same as 

the code    
(  *         +)     

*            +  which can be 

identified with the code    
(  *         +)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     

( ) , where   

*                                  +.  
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Note that    
(  *         +)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is equivalent to the code   

   
*                                   + that can be realised 

as the code    
(          *          +). 

 

(ii) Dimension = 3: Let   *     +     such that    is linearly 

independent.  

 

First, we determine the number of possible     -codes (up to 

equivalent) of dimension 3 with generator  . Table 8 as follows 

describe the support of    for all     . From the table, we can see 

that any three elements in     are linearly independent and hence any 

three elements in    can form such a set  . This implies that there are 

  
     different combinations that can form  . 

 
TABLE 8: The support of (        )  for      

 

     
    (  ) 

                       

              

                

              

              

               

               

               

                

 

From table 8, we also observe that |    (  )      (     )|    for 

  *       +. For an element      where      and        , we 

have |    (  )      ( )|  |    (     )      ( )|   .  

 

Case 1: Suppose there exist a pair of elements       such that 

     (  )      (  )   .  

 

In this case, two of the elements in   are    and       for some 

  *       +, whereas the third element can be chosen arbitrarily from 

the set    { 
       }  . There are altogether        possible sets   

falling into this case. Every possible linear code    
(   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is equivalent 

to      
*                          +, which can be realised 

as the code    
(          *       +). 
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Case 2: Suppose the intersection of supports for each pair of element in 

   is equal to 2. From Table 3.3.3, we observe that 

 ⋂     (  )      . There are 
     

  
    different sets   falling 

into this case. Each possible linear code    
(   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is equivalent to 

     
*                          +, which can be realised as 

the     -code    
(          *       +). 

 

From the two cases, we conclude that every group ring code of 

dimension 3 with generator   is equivalent to some group ring code 

over   . 

 

(iii) Dimension = 2: Let   *   +     such that    is linearly 

independent. As stated in previous case,      (  )      (  )  is 

either 0 or 2. 

 

Case 1: Suppose      (  )      (  )   . Then    
(   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is 

equivalent to      
*                 +, which can be realised as 

the code    
(          *    +). 

 

Case 2: Suppose      (  )      (  )   . Then    
(   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is 

equivalent to      
*                 +, which can be realised as 

the code    
(          *    +). 

 

From the discussions, we see that every     -code with generator   

is equivalent to some     -code. 

 

Hence, similar to the Theorem 3.2.2, we can conclude that every 

    -code is a     -code up to equivalent.  
 

4.  CONCLUSION 

In this paper, we see that every group ring code over a cyclic group 

has a shift spanning set. We have shown that every     -code (or     -code) 

can always be expressed as an     -code (or     -code) up to equivalent by 

using a suitable generator and an appropriate submodule. In fact, we also get 

similar result for      -codes, that is, every      -code is equivalent to 

some      -codes. However we do not know yet whether the converse is 

true. We do know the existence of an     -code that can never be an     -

code. The existence of a group ring code that can never be a group ring code 

over a cyclic group remains as an open problem. Our result on      -code 
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where       and   led us to conjecture that, every group ring code over the 

dihedral group     is equivalent to some group ring code over the cyclic 

group    .  
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